Package: RankAggregator 0.0.1

RankAggregator: Aggregation of (Partial) Ordinal Rankings

Easily compute an aggregate ranking (also called a median ranking or a consensus ranking) according to the axiomatic approach presented by Cook et al. (2007). This approach minimises the number of violations between all candidate consensus rankings and all input (partial) rankings, and draws on a branch and bound algorithm and a heuristic algorithm to drastically improve speed. The package also provides an option to bootstrap a consensus ranking based on resampling input rankings (with replacement). Input rankings can be either incomplete (partial) or complete. Reference: Cook, W.D., Golany, B., Penn, M. and Raviv, T. (2007) <doi:10.1016/j.cor.2005.05.030>.

Authors:Jay Burns [aut, cre], Adam Butler [aut]

RankAggregator_0.0.1.tar.gz
RankAggregator_0.0.1.zip(r-4.5)RankAggregator_0.0.1.zip(r-4.4)RankAggregator_0.0.1.zip(r-4.3)
RankAggregator_0.0.1.tgz(r-4.5-any)RankAggregator_0.0.1.tgz(r-4.4-any)RankAggregator_0.0.1.tgz(r-4.3-any)
RankAggregator_0.0.1.tar.gz(r-4.5-noble)RankAggregator_0.0.1.tar.gz(r-4.4-noble)
RankAggregator_0.0.1.tgz(r-4.4-emscripten)RankAggregator_0.0.1.tgz(r-4.3-emscripten)
RankAggregator.pdf |RankAggregator.html
RankAggregator/json (API)

# Install 'RankAggregator' in R:
install.packages('RankAggregator', repos = c('https://jburns88.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/jburns88/rankaggregator/issues

Datasets:

On CRAN:

Conda:

2.70 score 146 downloads 6 exports 0 dependencies

Last updated 5 years agofrom:ece714503a. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 31 2025
R-4.5-winNOTEMar 31 2025
R-4.5-macNOTEMar 31 2025
R-4.5-linuxNOTEMar 31 2025
R-4.4-winNOTEMar 31 2025
R-4.4-macNOTEMar 31 2025
R-4.4-linuxNOTEMar 31 2025
R-4.3-winNOTEMar 31 2025
R-4.3-macNOTEMar 31 2025

Exports:consensusRankingconsensusRankingBootevaluationMatrixextendRankinglowerBoundupperBound

Dependencies: