Package: RankAggregator 0.0.1

RankAggregator: Aggregation of (Partial) Ordinal Rankings

Easily compute an aggregate ranking (also called a median ranking or a consensus ranking) according to the axiomatic approach presented by Cook et al. (2007). This approach minimises the number of violations between all candidate consensus rankings and all input (partial) rankings, and draws on a branch and bound algorithm and a heuristic algorithm to drastically improve speed. The package also provides an option to bootstrap a consensus ranking based on resampling input rankings (with replacement). Input rankings can be either incomplete (partial) or complete. Reference: Cook, W.D., Golany, B., Penn, M. and Raviv, T. (2007) <doi:10.1016/j.cor.2005.05.030>.

Authors:Jay Burns [aut, cre], Adam Butler [aut]

RankAggregator_0.0.1.tar.gz
RankAggregator_0.0.1.zip(r-4.5)RankAggregator_0.0.1.zip(r-4.4)RankAggregator_0.0.1.zip(r-4.3)
RankAggregator_0.0.1.tgz(r-4.4-any)RankAggregator_0.0.1.tgz(r-4.3-any)
RankAggregator_0.0.1.tar.gz(r-4.5-noble)RankAggregator_0.0.1.tar.gz(r-4.4-noble)
RankAggregator_0.0.1.tgz(r-4.4-emscripten)RankAggregator_0.0.1.tgz(r-4.3-emscripten)
RankAggregator.pdf |RankAggregator.html
RankAggregator/json (API)

# Install 'RankAggregator' in R:
install.packages('RankAggregator', repos = c('https://jburns88.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jburns88/rankaggregator/issues

Datasets:

On CRAN:

2.70 score 118 downloads 6 exports 0 dependencies

Last updated 4 years agofrom:ece714503a. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winNOTENov 01 2024
R-4.4-macNOTENov 01 2024
R-4.3-winNOTENov 01 2024
R-4.3-macNOTENov 01 2024

Exports:consensusRankingconsensusRankingBootevaluationMatrixextendRankinglowerBoundupperBound

Dependencies: